Published in

Nature Research, Nature Chemistry, 4(5), p. 282-292, 2013

DOI: 10.1038/nchem.1577

Links

Tools

Export citation

Search in Google Scholar

Enzyme-Free Translation of DNA into Sequence-Defined Synthetic Polymers Structurally Unrelated to Nucleic Acids

Journal article published in 2013 by Jia Niu ORCID, Ryan Hili, David R. Liu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The translation of DNA sequences into corresponding biopolymers enables the production, function, and evolution of the macromolecules of life. In contrast, methods to generate sequence-defined synthetic polymers with similar levels of control have remained elusive. Here we report the development of a DNA-templated translation system that enables the enzyme-free translation of DNA templates into sequence-defined synthetic polymers that have no necessary structural relationship with nucleic acids. We demonstrate the efficiency, sequence-specificity, and generality of this translation system by oligomerizing building blocks including polyethylene glycol (PEG), α-(d)-peptides, and β-peptides in a DNA-programmed manner. Sequence-defined synthetic polymers with molecular weights of 26 kDa containing 16 consecutively coupled building blocks and 90 densely functionalized β-amino acid residues were translated from DNA templates using this strategy. We integrated the DNA-templated translation system developed here into a complete cycle of translation, coding sequence replication, template regeneration, and re-translation suitable for the iterated in vitro selection of functional sequence-defined synthetic polymers unrelated in structure to nucleic acids.