Published in

MDPI, Cancers, 4(6), p. 1986-2011, 2014

DOI: 10.3390/cancers6041986

Links

Tools

Export citation

Search in Google Scholar

STAT3: A Novel Molecular Mediator of Resistance to Chemoradiotherapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Chemoradiotherapy (CRT) represents a standard treatment for many human cancers, frequently combined with radical surgical resection. However, a considerable percentage of primary cancers are at least partially resistant to CRT, which represents a substantial clinical problem, because it exposes cancer patients to the potential side effects of both irradiation and chemotherapy. It is therefore exceedingly important to determine the molecular characteristics underlying CRT-resistance and to identify novel molecular targets that can be manipulated to re-sensitize resistant tumors to CRT. In this review, we highlight much of the recent evidence suggesting that the signal transducer and activator of transcription 3 (STAT3) plays a prominent role in mediating CRT-resistance, and we outline why inhibition of STAT3 holds great promise for future multimodal treatment concepts in oncology.