Published in

BioMed Central, BMC Microbiology, 1(10), p. 262

DOI: 10.1186/1471-2180-10-262

Links

Tools

Export citation

Search in Google Scholar

T-RFPred: a nucleotide sequence size prediction tool for microbial community description based on terminal-restriction fragment length polymorphism chromatograms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Terminal-Restriction Fragment Length Polymorphism (T-RFLP) is a technique used to analyze complex microbial communities. It allows for the quantification of unique or numerically dominant phylotypes in amplicon pools and it has been used primarily for comparisons between different communities. T-RFPred, Terminal-Restriction Fragment Prediction, was developed to identify and assign taxonomic information to chromatogram peaks of a T-RFLP fingerprint for a more comprehensive description of microbial communities. The program estimates the expected fragment size of representative 16S rRNA gene sequences (either from a complementary clone library or from public databases) for a given primer and restriction enzyme(s) and provides candidate taxonomic assignments. Results To show the accuracy of the program, T-RFLP profiles of a marine bacterial community were described using artificial bacterioplankton clone libraries of sequences obtained from public databases. For all valid chromatogram peaks, a phylogenetic group could be assigned. Conclusions T-RFPred offers enhanced functionality of T-RFLP profile analysis over current available programs. In particular, it circumvents the need for full-length 16S rRNA gene sequences during taxonomic assignments of T-RF peaks. Thus, large 16S rRNA gene datasets from environmental studies, including metagenomes, or public databases can be used as the reference set. Furthermore, T-RFPred is useful in experimental design for the selection of primers as well as the type and number of restriction enzymes that will yield informative chromatograms from natural microbial communities.