Links

Tools

Export citation

Search in Google Scholar

Template Route to Chemically Engineering Cavities at Nanoscale: A Case Study of Zn(OH)2 Template

Journal article published in 2010 by Dapeng Wu, Yi Jiang, Junli Liu ORCID, Yafei Yuan, Junshu Wu, Kai Jiang, Dongfeng Xue
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A size-controlled Zn(OH)(2) template is used as a case study to explain the chemical strategy that can be executed to chemically engineering various nanoscale cavities. Zn(OH)(2) octahedron with 8 vertices and 14 edges is fabricated via a low temperature solution route. The size can be tuned from 1 to 30 μm by changing the reaction conditions. Two methods can be selected for the hollow process without loss of the original shape of Zn(OH)(2) template. Ion-replacement reaction is suitable for fabrication of hollow sulfides based on the solubility difference between Zn(OH)(2) and products. Controlled chemical deposition is utilized to coat an oxide layer on the surface of Zn(OH)(2) template. The abundant hydroxyl groups on Zn(OH)(2) afford strong coordination ability with cations and help to the coating of a shell layer. The rudimental Zn(OH)(2) core is eliminated with ammonia solution. In addition, ZnO-based heterostructures possessing better chemical or physical properties can also be prepared via this unique templating process. Room-temperature photoluminescence spectra of the heterostructures and hollow structures are also shown to study their optical properties.