Dissemin is shutting down on January 1st, 2025

Published in

Institute of Mathematical Statistics, Electronic Journal of Statistics, none(3), 2009

DOI: 10.1214/08-ejs341

Links

Tools

Export citation

Search in Google Scholar

SIMEX and standard error estimation in semiparametric measurement error models

Journal article published in 2009 by Tatiyana V. Apanasovich, Raymond J. Carroll, Arnab Maity ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

SIMEX is a general-purpose technique for measurement error correction. There is a substantial literature on the application and theory of SIMEX for purely parametric problems, as well as for purely non-parametric regression problems, but there is neither application nor theory for semiparametric problems. Motivated by an example involving radiation dosimetry, we develop the basic theory for SIMEX in semiparametric problems using kernel-based estimation methods. This includes situations that the mismeasured variable is modeled purely parametrically, purely non-parametrically, or that the mismeasured variable has components that are modeled both parametrically and nonparametrically. Using our asymptotic expansions, easily computed standard error formulae are derived, as are the bias properties of the nonparametric estimator. The standard error method represents a new method for estimating variability of nonparametric estimators in semiparametric problems, and we show in both simulations and in our example that it improves dramatically on first order methods.We find that for estimating the parametric part of the model, standard bandwidth choices of order O(n(-1/5)) are sufficient to ensure asymptotic normality, and undersmoothing is not required. SIMEX has the property that it fits misspecified models, namely ones that ignore the measurement error. Our work thus also more generally describes the behavior of kernel-based methods in misspecified semiparametric problems.