Published in

Elsevier, Neuroscience Letters, 1(463), p. 49-53, 2009

DOI: 10.1016/j.neulet.2009.07.051

Links

Tools

Export citation

Search in Google Scholar

Spinal Ceramide and Neuronal Apoptosis in Morphine Antinociceptive Tolerance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Opiates, like morphine, are the most effective analgesics for treating acute and chronic severe pain, but their use is limited by the development of analgesic tolerance and hypersensitivity to innocuous and noxious stimuli. Because opioids are a mainstay of pain management, restoring their efficacy has great clinical importance. We have recently demonstrated that spinal ceramide, a sphingolipid signaling molecule plays a central role in the development of morphine antinociceptive tolerance. We now report that ceramide up-regulation in dorsal horn tissues in response to chronic morphine administration is associated with significant neuronal apoptosis. Inhibition of ceramide biosynthesis attenuated both the increase in neuronal apoptosis and the development of antinociceptive tolerance. These findings indicate that spinal ceramide upregulation is a key pro-apoptotic event that occurs upstream of the development of morphine antinociceptive tolerance and support the rationale for development of inhibitors of ceramide biosynthesis as adjuncts to opiates for the management of chronic pain.