Published in

American Geophysical Union, Journal of Geophysical Research: Atmospheres, 4(118), p. 1950-1963, 2013

DOI: 10.1002/jgrd.50151

Links

Tools

Export citation

Search in Google Scholar

Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

[1] Major summertime aerosol emission sources in Paris were assessed using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The application of positive matrix factorization (PMF) to the highly mass and time resolved AMS measurements allowed the identification of primary and secondary sources of organic (OA) and sulfate aerosols. Primary anthropogenic emissions contributed on average ~27% (14.7% cooking, 12% traffic) to the total organic mass, while the major contribution to the organic fraction was associated with secondary formation products. Low-volatility oxygenated OA (LV-OOA, 25.2%) and semi-volatile oxygenated OA (SV-OOA, 32.4%) factors were classified as SOA. An additional component with high S:C and O:C ratios was identified and attributed to marine emissions (marine organic aerosol, MOA), owing to its high correlation with methanesulfonic acid (R2 = 0.84) and contributing on average 15.7% to the total OA mass, even in the continental megacity of Paris. Non-sea salt sulfate was apportioned by including both organic and sulfate ions in the PMF data matrix. This allowed apportionment of submicron sulfate to continental vs. marine sources. A detailed source apportionment of PM1 combining AMS, aethalometer and filter data is presented.