Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Nano Energy, (22), p. 319-327, 2016

DOI: 10.1016/j.nanoen.2016.01.019

Links

Tools

Export citation

Search in Google Scholar

Dispersion of carbon nanotubes in aluminum improves radiation resistance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We can mass-produce metal/carbon nanotube (CNT) composites that show improved radiation tolerance. The 0.5 wt% Al+CNT composite showed improved tensile strength without reduction of tensile ductility before radiation, and reduced void/pore generation and radiation embrittlement at high displacements per atom (DPA). Under helium ion irradiation up to 72 DPA, the 1D carbon nanostructures survive, while sp(2) bonded graphene transforms to spa tetrahedral amorphous carbon. Self-ion (Al) irradiation converts CNTs to a metastable form of Al4C3, but still as slender 1D nanorods with prolific internal interfaces that catalyze recombination of radiation defects, reducing radiation hardening and porosity generation. The 1D fillers may also form percolating paths of "nano-chimneys" that outgas the accumulated helium and other fission gases, providing an essential solution to the gas accumulation problem.