Published in

Wiley, Environmental and Molecular Mutagenesis, 1(55), p. 1-14, 2013

DOI: 10.1002/em.21811

Links

Tools

Export citation

Search in Google Scholar

Extracellular amyloid beta 42 causes necrosis, inhibition of nuclear division, and mitotic disruption under both folate deficient and folate replete conditions as measured by the cytokinesis-block micronucleus cytome assay

Journal article published in 2013 by Sau Lai Lee, Philip Thomas, Michael Fenech
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Alzheimer's disease is associated with accumulation of extracellular beta amyloid peptide 42 (Aβ42) which may induce DNA damage and reduce cellular regenerative potential. These effects may be exacerbated under conditions of folate deficiency. The aim of this study was to investigate whether extracellular Aβ42 induces DNA damage and cell death in human peripheral lymphocytes and whether there is an interactive effect between extracellular Aβ42 and folic acid status. Peripheral blood lymphocytes were cultured in medium under conditions of both low and high folate (20 and 200 nM, respectively) and challenged with either Aβ42 or the physiologically normal form Aβ40 (both at 5, 10, 15 µM). Genome stability and cytotoxicity events were investigated using the cytokinesis-block micronucleus cytome (CBMN-cyt) assay. Outcome measures scored included the nuclear division index (NDI), necrosis, apoptosis, binucleated cells with micronuclei (MN), nucleoplasmic bridges (NPB), and nuclear buds (NBUD) and abnormally shaped nuclei (circular, (CIR) and horse-shoe, (HS) that may be indicative of mitotic disruption. Folic acid deficiency significantly reduced NDI (P