Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6158(342), p. 592-598, 2013

DOI: 10.1126/science.1243283

Links

Tools

Export citation

Search in Google Scholar

Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under five years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site Ø, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site Ø when exposed to extremes of pH, osmolality, and temperature. Six RSV F-crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site Ø-stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.