Published in

Elsevier, Journal of Biological Chemistry, 53(287), p. 44184-44191, 2012

DOI: 10.1074/jbc.m112.420869

Links

Tools

Export citation

Search in Google Scholar

Mycobacterium tuberculosis ESAT-6 Exhibits a Unique Membrane-interacting Activity That Is Not Found in Its Ortholog from Non-pathogenic Mycobacterium smegmatis*

Journal article published in 2012 by Joaquin De Leon, Yue, Guozhong Jiang, Yue Ma, Eric Rubin ORCID, Sarah Fortune, Jianjun Sun
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Mycobacterium tuberculosis ESAT-6 (MtbESAT-6) reportedly shows membrane/cell-lysis activity, and recently its biological roles in pathogenesis have been implicated in rupture of the phagosomes for bacterial cytosolic translocation. However, molecular mechanism of MtbESAT-6-mediated membrane interaction, particularly in relation with its biological functions in pathogenesis, is poorly understood. In this study, we investigated the pH-dependent membrane interaction of MtbESAT-6, MtbCFP-10, and the MtbESAT-6/CFP-10 heterodimer, by using liposomal model membranes that mimic phagosomal compartments. MtbESAT-6, but neither MtbCFP-10 nor the heterodimer, interacted with the liposomal membranes at acidic conditions, which was evidenced by release of K+ ions from the liposomes. Most importantly, the orthologous ESAT-6 from non-pathogenic Mycobacterium smegmatis (MsESAT-6) was essentially inactive in release of K+. The differential membrane interactions between MtbESAT-6 and MsESAT-6 were further confirmed in an independent membrane leakage assay using the dye/quencher pair, 8-aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX). Finally, using intrinsic and extrinsic fluorescence approaches, we probed the pH-dependent conformational changes of MtbESAT-6 and MsESAT-6. At acidic pH conditions, MtbESAT-6 underwent a significant conformational change, which was featured by an increased solvent-exposed hydrophobicity, while MsESAT-6 showed little conformational change in response to acidification. In conclusion, we have demonstrated that MtbESAT-6 possesses a unique membrane-interacting activity that is not found in MsESAT-6 and established the utility of rigorous biochemical approaches in dissecting the virulence of M. tuberculosis.