Published in

American Institute of Physics, Journal of Applied Physics, 21(117), p. 214701

DOI: 10.1063/1.4921810

Links

Tools

Export citation

Search in Google Scholar

The role of pyrimidine and water as underlying molecular constituents for describing radiation damage in living tissue: A comparative study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

8 págs.; 7 figs.; 2 tabs. ; © 2015 AIP Publishing LLC. Water is often used as the medium for characterizing the effects of radiation on living tissue. However, in this study, charged-particle track simulations are employed to quantify the induced physicochemical and potential biological implications when a primary ionising particle with energy 10 keV strikes a medium made up entirely of water or pyrimidine. Note that pyrimidine was chosen as the DNA/RNA bases cytosine, thymine, and uracil can be considered pyrimidine derivatives. This study aims to assess the influence of the choice of medium on the charged-particle transport, and identify how appropriate it is to use water as the default medium to describe the effects of ionising radiation on living tissue. Based on the respective electron interaction cross sections, we provide a model, which allows the study of radiation effects not only in terms of energy deposition (absorbed dose and stopping power) but also in terms of the number of induced molecular processes. Results of these parameters for water and pyrimidine are presented and compared. ; This research was supported by the Australian Research Council (ARC) through its Centres of Excellence Program. D.B.J. thanks the ARC for provision of a Discovery Early Career Researcher Award. We also acknowledge the support of the Spanish Ministerio de Economia y Competitivad under Project No. FIS 2012-31230 and the European Union COST Actions (MP1002 and CM1301). P.L.V. acknowledges the Portuguese Foundation for Science and Technology (FCTMEC) through research grants PTDC/FIS-ATO/1832/2012, UID/FIS/00068/2013, and SFRH/BSAB/105792/2014. P.L.V. also acknowledges his Visiting Professor position at Flinders University, Adelaide, South Australia. ; Peer Reviewed