Published in

BioMed Central, Virology Journal, 1(12), 2015

DOI: 10.1186/s12985-015-0347-8

Links

Tools

Export citation

Search in Google Scholar

Phylogenetic analysis of avian infectious bronchitis virus S1 glycoprotein regions reveals emergence of a new genotype in Moroccan broiler chicken flocks

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Infectious bronchitis virus (IBV), a major pathogen of commercial poultry flocks, circulates in the form of several serotypes/genotypes. Only a few amino-acid changes in the S1 subunit of wild-type IBVS proteins may result in mutants unaffected by current vaccines. Methods Partial S1 gene sequences of 3 IBV isolates of the Moroccan Italy 02 genotype from vaccinated and unvaccinated broiler chicken flocks, located in southern and central regions of Morocco, were amplified by RT-PCR, sequenced, and aligned for phylogenetic and amino-acid similarity analyses. Results The three isolates were found genetically highly distant from known avian IBV based on partial sequences of their S1 genes: gammaCoV/chicken/Morocco/I01/2011(IBV/Morocco/01), gammaCoV/chicken/Morocco/I30/2010 (IBV/Morocco/30), and gammaCoV/chicken/Morocco/I38/2013 (IBV/Morocco/38), nucleotide sequence identities reached 89.5 % to 90.9 % among the three isolates. The deduced protein sequence identities ranged from 29.7 % (between IBV/Morocco/38 and Egypt SCU-14/2013-1) to 78.2 % (between IBV/Morocco/01 and Spain/05/866). Amino acid sequence comparison and phylogenetic analysis indicated the emergence of a new Moroccan genotype, clustering with regionally related isolates from Spain (Spain/05/866) and belonging to a new sub-genotype. Conclusion Our sequencing results demonstrate a co-circulation of wild-type infectious bronchitis viruses in broiler chickens. These results justify permanent monitoring of circulating strains in order to rationally modify vaccination strategies to make them appropriate to the evolving field situation.