Published in

American Physical Society, Physical review B, 7(91)

DOI: 10.1103/physrevb.91.075314

Links

Tools

Export citation

Search in Google Scholar

Pulsed Low-Field Electrically Detected Magnetic Resonance

Journal article published in 2014 by L. Dreher, F. Hoehne, H. Morishita ORCID, H. Huebl, M. Stutzmann ORCID, K. M. Itoh, M. S. Brandt
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present pulsed electrically detected magnetic resonance (EDMR) measurements at low magnetic fields using posphorus-doped silicon with natural isotope composition as a model system. Our measurements show that pulsed EDMR experiments, well established at X-band frequencies (10 GHz), such as coherent spin rotations, Hahn echoes, and measurements of parallel and antiparallel spin pair life times are also feasible at frequencies in the MHz regime. We find that the Rabi frequency of the coupled 31P electron-nuclear spin system scales with the magnetic field as predicted by the spin Hamiltonian, while the measured spin coherence and recombination times do not strongly depend on the magnetic field in the region investigated. The usefulness of pulsed low-field EDMR for measurements of small hyperfine interactions is demonstrated by electron spin echo envelope modulation measurements of the Pb0 dangling-bond state at the Si/SiO2 interface. A pronounced modulation with a frequency at the free Larmor frequency of hydrogen nuclei was observed for radio frequencies between 38 MHz and 400 MHz, attributed to the nuclear magnetic resonance of hydrogen in an adsorbed layer of water This demonstrates the high sensitivity of low-field EDMR also for spins not directly participating in the spin-dependent transport investigated. ; Comment: 12 pages, 5 figures