Published in

Nature Research, Nature, 7426(491), p. 774-778, 2012

DOI: 10.1038/nature11599

Links

Tools

Export citation

Search in Google Scholar

Resurrection of endogenous retroviruses in antibody-deficient mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracks1, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome2,3. The long-term consequences for the host of interaction with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential impact of one microbial symbiont on another is even less clear. We have studied the control of ERVs in the commonly-used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic4 MLV (eMLV) in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immune-deficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.