Published in

Public Library of Science, PLoS ONE, 11(7), p. e50610, 2012

DOI: 10.1371/journal.pone.0050610

Links

Tools

Export citation

Search in Google Scholar

Assessment of Genotype Imputation Performance Using 1000 Genomes in African American Studies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Genotype imputation, used in genome-wide association studies to expand coverage of single nucleotide polymorphisms (SNPs), has performed poorly in African Americans compared to less admixed populations. Overall, imputation has typically relied on HapMap reference haplotype panels from Africans (YRI), European Americans (CEU), and Asians (CHB/JPT). The 1000 Genomes project offers a wider range of reference populations, such as African Americans (ASW), but their imputation performance has had limited evaluation. Using 595 African Americans genotyped on Illumina’s HumanHap550v3 BeadChip, we compared imputation results from four software programs (IMPUTE2, BEAGLE, MaCH, and MaCH-Admix) and three reference panels consisting of different combinations of 1000 Genomes populations (February 2012 release): (1) 3 specifically selected populations (YRI, CEU, and ASW); (2) 8 populations of diverse African (AFR) or European (AFR) descent; and (3) all 14 available populations (ALL). Based on chromosome 22, we calculated three performance metrics: (1) concordance (percentage of masked genotyped SNPs with imputed and true genotype agreement); (2) imputation quality score (IQS; concordance adjusted for chance agreement, which is particularly informative for low minor allele frequency [MAF] SNPs); and (3) average r2hat (estimated correlation between the imputed and true genotypes, for all imputed SNPs). Across the reference panels, IMPUTE2 and MaCH had the highest concordance (91%–93%), but IMPUTE2 had the highest IQS (81%–83%) and average r2hat (0.68 using YRI+ASW+CEU, 0.62 using AFR+EUR, and 0.55 using ALL). Imputation quality for most programs was reduced by the addition of more distantly related reference populations, due entirely to the introduction of low frequency SNPs (MAF≤2%) that are monomorphic in the more closely related panels. While imputation was optimized by using IMPUTE2 with reference to the ALL panel (average r2hat = 0.86 for SNPs with MAF>2%), use of the ALL panel for African American studies requires careful interpretation of the population specificity and imputation quality of low frequency SNPs.