Published in

American Geophysical Union, Geophysical Research Letters, 17(23), p. 2357-2360, 1996

DOI: 10.1029/96gl01792

Links

Tools

Export citation

Search in Google Scholar

The 1994 northern midlatitude budget of stratospheric chlorine derived from ATMOS/ATLAS-3 observations.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Volume mixing ratio (VMR) profiles of the chlorine-bearing gases HCl, ClONO2, CCl3F, CCl2F2, CHClF2, CCl4, and CH3Cl have been measured between 3 and 49 degrees northern- and 65 to 72 degrees southern latitudes with the Atmospheric Trace MOlecule Spectroscopy (ATMOS) instrument during the ATmospheric Laboratory for Applications and Science (ATLAS)-3 shuttle mission of 3 to 12 November 1994. A subset of these profiles obtained between 20 and 49 degrees N at sunset, combined with ClO profiles measured by the Millimeter-wave Atmospheric Sounder (MAS) also from aboard ATLAS-3, measurements by balloon for HOCl, CH3CCl3 and C2Cl3F3, and model calculations for COClF indicates that the mean burden of chlorine, Cl-TOT, was equal to (3.53 +/- 0.10) ppbv (parts per billion by volume), 1-sigma, throughout the stratosphere at the time of the ATLAS 3 mission. This is some 37% larger than the mean 2.58 ppbv value measured by ATMOS within the same latitude zone during the Spacelab 3 flight of 29 April to 6 May 1985, consitent with an exponential growth rate of the chlorine loading in the stratosphere equal to 3.3%/yr or a linear increase of 0.10 ppbv/yr over the Spring-1985 to Fall-1994 time period. These findings are in agreement with both the burden and increase of the main anthropogenic Cl-bearing source gases at the surface during the 1980s, confirming that the stratospheric chlorine loading is primarily of anthropogenic origin.