Published in

American Association of Immunologists, The Journal of Immunology, 8(186), p. 4946-4958, 2011

DOI: 10.4049/jimmunol.1003535

Links

Tools

Export citation

Search in Google Scholar

Phospholipase C-β3 is a key modulator of IL-8 expression in cystic fibrosis bronchial epithelial cells.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Respiratory insufficiency is the major cause of morbidity and mortality in patients affected by cystic fibrosis. An excessive neutrophilic inflammation, mainly orchestrated by the release of IL-8 from bronchial epithelial cells and amplified by chronic bacterial infection with Pseudomonas aeruginosa, leads to progressive tissue destruction. The anti-inflammatory drugs presently utilized in cystic fibrosis patients have several limitations, indicating the need for identifying novel molecular targets. To address this issue, we preliminarily studied the association of 721 single-nucleotide polymorphisms from 135 genes potentially involved in signal transduction implicated in neutrophil recruitment in a cohort of F508del homozygous cystic fibrosis patients with either severe or mild progression of lung disease. The top ranking association was found for a nonsynonymous polymorphism of the phospholipase C beta 3 (PLCB3) gene. Studies in bronchial epithelial cells exposed to P.aeruginosa revealed that PLCB3 is implicated in extra cellular nucleotide–dependent intracellular calcium signaling, leading to activation of the protein kinase C alpha and beta and of the nuclear transcription factor NF-κB p65. The pro-inflammatory pathway regulated by PLCB3 acts by potentiating the Toll-like Receptors’ signaling cascade and represents an interesting molecular target to attenuate the excessive recruitment of neutrophils without completely abolishing the inflammatory response.