Published in

Taylor & Francis (Routledge), Scandinavian Journal of Clinical and Laboratory Investigation, 5(75), p. 390-397

DOI: 10.3109/00365513.2015.1031692

Links

Tools

Export citation

Search in Google Scholar

Prevalence of glucose-6-phosphate dehydrogenase deficiency and diagnostic challenges in 1500 immigrants in Denmark examined for haemoglobinopathies

Journal article published in 2015 by Marie Warny, Tobias Wirenfeldt Klausen, Jesper Petersen, Henrik Birgens
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Similar to the thalassaemia syndromes, glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in areas historically exposed to malaria. In the present study, we used quantitative and molecular methods to determine the prevalence of G6PD deficiency in a population of 1508 immigrants in Denmark. We found the allele frequency to be between 2.4 and 2.9% in the female immigrants. Furthermore, the mutation pattern in the studied population showed a high prevalence of the G6PD A- 202A variant in African and African-American immigrants, a high prevalence of the G6PD Mediterranean variant in Mediterranean European and Western Asian immigrants, and substantial heterogeneity in the variants found in the Eastern Asian/Pacific immigrants. Inasmuch as many of the patients included in this investigation had various thalassaemic syndromes, we were able to evaluate the effects of the interaction between a low mean corpuscular haemoglobin (MCH) value and G6PD activity, particularly in heterozygous females. The activity level was markedly influenced by the MCH value in females with normal G6PD activity, but not in heterozygous and homozygous females. Comparison of patients with normal G6PD activity and heterozygous females indicated considerable overlap in activity levels. To help separating heterozygous females from females with wild-type genes, a DNA analysis is necessary when the female activity level is between 4.0 and 4.9 U/g hgb corresponding to 50–60% of the median activity of unaffected males.