Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Computer Vision and Image Understanding, 2(80), p. 130-171

DOI: 10.1006/cviu.2000.0866

Links

Tools

Export citation

Search in Google Scholar

Model Based Detection of Tubular Structures in 3D Images

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Detection of tubular structures in 3D images is an important issue for vascular medical imaging. We present in this paper a new approach for centerline detection and reconstruction of 3D tubular structures. Several models of vessels are introduced for estimating the sensitivity of the image second-order derivatives according to elliptical cross section, to curvature of the axis, or to partial volume effects. Our approach uses a multiscale analysis for extracting vessels of different sizes according to the scale. For a given model of vessel, we derive an analytic expression of the relationship between the radius of the structure and the scale at which it is detected. The algorithm gives both centerline extraction and radius estimation of the vessels allowing their reconstruction. The method has been tested on synthetic images, an image of a phantom, and real images, with encouraging results.