Published in

Elsevier, Free Radical Biology and Medicine, 9(48), p. 1182-1187

DOI: 10.1016/j.freeradbiomed.2010.01.038

Links

Tools

Export citation

Search in Google Scholar

Redox-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Myocardial failure is associated with increased oxidative stress and abnormal excitation-contraction coupling characterized by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores and a reduction in Ca(2+)-transient amplitude. Little is known about the mechanisms whereby oxidative stress affects Ca(2+) handling and contractile function; however, reactive thiols may be involved. We used an in vitro cardiomyocyte system to test the hypothesis that short-term oxidative stress induces SR Ca(2+) depletion via redox-mediated regulation of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) and the sodium-Ca(2+) exchanger (NCX) and that this is associated with thiol oxidation. Adult rat ventricular myocytes paced at 5 Hz were superfused with H(2)O(2) (100 microM, 15 min). H(2)O(2) caused a progressive decrease in cell shortening followed by diastolic arrest, which was associated with decreases in SR Ca(2+) content, systolic [Ca(2+)](i), and Ca(2+)-transient amplitude, but no change in diastolic [Ca(2+)](i). H(2)O(2) caused reciprocal effects on the activities of SERCA (decreased) and NCX (increased). Pretreatment with the NCX inhibitor KB-R7943 before H(2)O(2) increased diastolic [Ca(2+)](i) and mimicked the effect of SERCA inhibition with thapsigargin. These functional effects were associated with oxidative modification of thiols on both SERCA and NCX. In conclusion, redox-mediated SR Ca(2+) depletion involves reciprocal regulation of SERCA and NCX, possibly via direct oxidative modification of both proteins.