Published in

American Meteorological Society, Monthly Weather Review, 2(144), p. 737-758, 2016

DOI: 10.1175/mwr-d-15-0100.1

Links

Tools

Export citation

Search in Google Scholar

On Polarimetric Radar Signatures of Deep Convection for Model Evaluation: Columns of Specific Differential Phase Observed during MC3E*

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.