Published in

ASME 2012 Summer Bioengineering Conference, Parts A and B

DOI: 10.1115/sbc2012-80723

Links

Tools

Export citation

Search in Google Scholar

Validation of a Novel Microscale Mold Patterning Protocol Based on Gelatin Methacrylate Photopolymerizable Hydrogels

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Native tissues are composed of functional three-dimensional (3D) units on the scale of 100–1000μm. The 3D architecture of these repeating units underlies the coordination of multicellular processes such as proliferation, differentiation, migration and apoptosis[1]. The requirement for 3D biomimetic matrices to mimic in vitro the ECM microarchitecture found in vivo becomes relevant in complex and vascularized tissue engineered models[2]. Among others, photopolymerizable hydrogels offer tunable geometrical features similar to the macromolecular-based components of soft ECM [3], can be crosslinked either in vivo or in vitro in the presence of a photoinitiator agent (PI) using visible or ultraviolet (UV) light irradiation, and have shown good compatibility with several protocols for cell embedding at different size-scales. In the present study, a new protocol to obtain cell-laden hydrogel micropatterns with highly controlled geometrical features is presented, based on the combination of polydimethylsiloxane (PDMS) replica molding and UV photopolimerization of methacrylate gelatin (GelMA).