Published in

Springer Verlag, Lecture Notes in Computer Science, p. 171-178

DOI: 10.1007/978-3-642-40760-4_22

Links

Tools

Export citation

Search in Google Scholar

Learning Nonrigid Deformations for Constrained Multi-modal Image Registration

Book chapter published in 2013 by John A. Onofrey ORCID, Lawrence H. Staib, Xenophon Papademetris
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a new strategy to constrain nonrigid registrations of multi-modal images using a low-dimensional statistical deformation model and test this in registering pre-operative and post-operative images from epilepsy patients. For those patients who may undergo surgical resection for treatment, the current gold-standard to identify regions of seizure involves craniotomy and implantation of intracranial electrodes. To guide surgical resection, surgeons utilize pre-op anatomical and functional MR images in conjunction with post-electrode implantation MR and CT images. The electrode positions from the CT image need to be registered to pre-op functional and structural MR images. The post-op MRI serves as an intermediate registration step between the pre-op MR and CT images. In this work, we propose to bypass the post-op MR image registration step and directly register the pre-op MR and post-op CT images using a low-dimensional nonrigid registration that captures the gross deformation after electrode implantation. We learn the nonrigid deformation characteristics from a principal component analysis of a set of training deformations and demonstrate results using clinical data. We show that our technique significantly outperforms both standard rigid and nonrigid intensity-based registration methods in terms of mean and maximum registration error.