Published in

Springer Verlag, Plasmonics, 4(2), p. 193-199

DOI: 10.1007/s11468-007-9034-y

Links

Tools

Export citation

Search in Google Scholar

Phase Transition and Optical Properties of DNA-Gold Nanoparticle Assemblies

Journal article published in 2007 by Young Sun ORCID, Nolan C. Harris, Ching-Hwa Kiang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We review recent work on DNA-linked gold nanoparticle assemblies. The synthesis, properties, and phase behavior of such DNA-gold nanoparticle assemblies are described. These nanoparticle assemblies have strong optical extinction in the ultraviolet and visible light regions; hence, the technique is used to study the kinetics and phase transitions of DNA-gold nanoparticle assemblies. The melting transition of DNA-gold nanoparticle assemblies shows unusual trends compared to those of free DNA. The phase transitions are influenced by many parameters, such as nanoparticle size, DNA sequence, DNA grafting density, DNA linker length, interparticle distance, base pairing defects, and disorders. The physics of the DNA-gold nanoparticle assemblies can be understood in terms of the phase behavior of complex fluids, with the colloidal gold interaction potential dominated by DNA hybridization energies.