Published in

Wiley, The Canadian Journal of Chemical Engineering, 4(94), p. 613-622, 2016

DOI: 10.1002/cjce.22433

Links

Tools

Export citation

Search in Google Scholar

Micro-syngas technology options for GtL

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Natural gas emissions contribute to climate change, and equally importantly, affect the health of populations near gas fields.[1] At night, the flares from the Bakken fields in North Dakota burn as bright as the lights in cities as large as Minneapolis. Rather than flaring (or worse, venting), this associated natural gas represents a multi-billion dollar opportunity.[2] Pipelines and liquefying natural gas are cost prohibitive in many cases. Converting methane to fuels is an attractive alternative. We examined three options to convert natural gas to syngas (H2 and CO), which is the first step to producing fuels: Steam Methane Reforming (SMR), Auto-Thermal Reforming (ATR), and Catalytic Partial Oxidation (CPOX). Based on a multi-objective optimization analysis, C5+ hydrocarbon yields are highest with CPOX as the first step followed by Fischer-Tropsch synthesis (FT). A micro-refinery with the CPOX-FT process treating 2800kL·d-1 (100 MCF·d-1) natural gas, produces 1300 L·d-1 (8.2 bbl·d-1) of C5+ hydrocarbons. Maximum yields for the SMR-FT and ATR-FT processes are 938 L·d-1 and 1100 L·d-1 (5.9 bbl·d-1, 7.0 bbl·d-1) of C5+, respectively. Large-scale POX and ATR processes produce 1600 L per 2800 kL (10 bbl per 100 MCF) of natural gas.