Published in

Springer Nature [academic journals on nature.com], Laboratory Investigation, 12(90), p. 1690-1703, 2010

DOI: 10.1038/labinvest.2010.147

Links

Tools

Export citation

Search in Google Scholar

Viral Factors Induce Hedgehog Pathway Activation in Humans with Viral Hepatitis, Cirrhosis, and Hepatocellular Carcinoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hh pathway activation promotes many processes that occur during fibrogenic liver repair. Whether the Hh pathway modulates the outcomes of virally-mediated liver injury has never been examined. Gene-profiling studies of human hepatocellular carcinomas (HCC) demonstrate Hh pathway activation in HCCs related to chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV). Because most HCC develop in cirrhotic livers, we hypothesized that Hh pathway activation occurs during fibrogenic repair of liver damage due to chronic viral hepatitis, and that Hh-responsive cells mediate disease progression and hepatocarciongenesis in chronic viral hepatitis. Immunohistochemistry and qRTPCR analysis were used to analyze Hh pathway activation and identify Hh-responsive cell types in liver biopsies from 45 patients with chronic HBV or HCV. Hh signaling was then manipulated in cultured liver cells to directly assess the impact of Hh activity in relevant cell types. We found increased hepatic expression of Hh ligands in all patients with chronic viral hepatitis, and demonstrated that infection with HCV stimulated cultured hepatocytes to produce Hh ligands. The major cell populations that expanded during cirrhosis and HCC (i.e., liver myofibroblasts, activated endothelial cells, and progenitors expressing markers of tumor stem/initiating cells) were Hh-responsive, and higher levels of Hh pathway activity associated with cirrhosis and HCC. Inhibiting pathway activity in Hh-responsive target cells reduced fibrogenesis, angiogenesis, and growth.