Published in

American Geophysical Union, Journal of Geophysical Research, D14(116), 2011

DOI: 10.1029/2010jd015355

Links

Tools

Export citation

Search in Google Scholar

Clear-sky biases in satellite infrared estimates of upper tropospheric humidity and its trends

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We use microwave retrievals of upper tropospheric humidity (UTH) to estimate the impact of clear-sky-only sampling by infrared instruments on the distribution, variability, and trends in UTH. Our method isolates the impact of the clear-sky-only sampling, without convolving errors from other sources. On daily time scales, IR-sampled UTH contains large data gaps in convectively active areas, with only about 20-30 % of the tropics (30 degrees S-30 degrees N) being sampled. This results in a dry bias of about -9 % RH in the area-weighted tropical daily UTH time series. On monthly scales, maximum clear-sky bias (CSB) is up to -30 % RH over convectively active areas. The magnitude of CSB shows significant correlations with UTH itself (-0.5) and also with the variability in UTH (-0.6). We also show that IR-sampled UTH time series have higher interannual variability and smaller trends compared to microwave sampling. We argue that a significant part of the smaller trend results from the contrasting influence of diurnal drift in the satellite measurements on the wet and dry regions of the tropics.