Dissemin is shutting down on January 1st, 2025

Published in

2013 IEEE 29th International Conference on Data Engineering (ICDE)

DOI: 10.1109/icde.2013.6544864

Links

Tools

Export citation

Search in Google Scholar

A Unified Model for Stable and Temporal Topic Detection from Social Media Data

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Web 2.0 users generate and spread huge amounts of messages in online social media. Such user-generated contents are mixture of temporal topics (e.g., breaking events) and stable topics (e.g., user interests). Due to their different natures, it is important and useful to distinguish temporal topics from stable topics in social media. However, such a discrimination is very challenging because the user-generated texts in social media are very short in length and thus lack useful linguistic features for precise analysis using traditional approaches. In this paper, we propose a novel solution to detect both stable and temporal topics simultaneously from social media data. Specifically, a unified user-temporal mixture model is proposed to distinguish temporal topics from stable topics. To improve this model’s performance, we design a regularization framework that exploits prior spatial information in a social network, as well as a burst-weighted smoothing scheme that exploits temporal prior information in the time dimension. We conduct extensive experiments to evaluate our proposal on two real data sets obtained from Del.icio.us and Twitter. The experimental results verify that our mixture model is able to distinguish temporal topics from stable topics in a single detection process. Our mixture model enhanced with the spatial regularization and the burst-weighted smoothing scheme significantly outperforms competitor approaches, in terms of topic detection accuracy and discrimination in stable and temporal topics.