Published in

Elsevier, Journal of Environmental Management, (121), p. 170-178, 2013

DOI: 10.1016/j.jenvman.2013.02.043

Links

Tools

Export citation

Search in Google Scholar

External costs of atmospheric lead emissions from a waste-to-energy plant: A follow-up assessment of indirect exposure via topsoil ingestion

Journal article published in 2013 by Massimo Pizzol, Flemming Møller, Marianne Thomsen ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study the Impact Pathway Approach (IPA) was used to calculate the external costs associated with indirect exposure, via topsoil ingestion, to atmospheric emissions of lead (Pb) from a waste-to-energy plant in Denmark. Three metal-specific models were combined to quantify the atmospheric dispersion of lead, its deposition and accumulation in topsoil, and the increase in blood lead concentration for children resulting from lead intake via topsoil ingestion. The neurotoxic impact of lead on children was estimated using a lead-specific concentration-response function that measures impaired cognitive development in terms of IQ points lost per each incremental mg/dl of lead in blood. Since IQ loss during childhood can be associated with a percent decrease in expected lifetime earnings, the monetary value of such an impact can be quantified and the external costs per kg of lead emitted from the plant were then calculated. The costs of indirect exposure calculated over a time horizon of 100 years, for the subpopulation of children of 0-3 years, and discounted at 3%, were in the range of 15-30 euro/kg. Despite the continued accumulation of lead in topsoil resulting in increasing future indirect exposure, the results indicate that costs associated with this exposure pathway are of the same order of magnitude as costs associated with direct exposure via inhalation, calculated at 45-91 euro/kg. Moreover, when the monetary value of future impacts is discounted to the present, the differences between the two exposure pathways are diminished. Finally, setting a short time horizon reduces the uncertainties but excludes part of the costs of indirect exposure from the assessment.