Published in

Wiley, Advanced Materials, 40(25), p. 5742-5749, 2013

DOI: 10.1002/adma.201302147

Links

Tools

Export citation

Search in Google Scholar

Directly deposited quantum dot solids using a colloidally stable nanoparticle ink

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We develop a photovoltaic colloidal quantum dot ink that allows for lossless, single-step coating of large areas in a manufacturing-compatible process. Our materials strategy involves a solution-phase ligand exchange to transport compatible linkers that yield 1-thioglycerol-capped PbS quantum dots in dimethyl sulfoxide with a photoluminescence quantum yield of 24%. A proof-of-principle solar cell made from the ink exhibits 2.1% power conversion efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.