Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 3(437), p. 2263-2269

DOI: 10.1093/mnras/stt2034

Links

Tools

Export citation

Search in Google Scholar

Cosmic dichotomy in the hosts of rapidly star-forming systems at low and high redshifts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This paper presents a compilation of clustering results taken from the literature for galaxies with highly enhanced (SFR [30-10^3] Msun/yr) star formation activity observed in the redshift range z=[0-3]. We show that, irrespective of the selection technique and only very mildly depending on the star forming rate, the clustering lengths of these objects present a sharp increase of about a factor 3 between z~1 and z~2, going from values of ~5 Mpc to about 15 Mpc and higher. This behaviour is reflected in the trend of the masses of the dark matter hosts of star-forming galaxies which increase from ~10^11.5 Msun to ~10^13.5 Msun between z~1 and z~2. Our analysis shows that galaxies which actively form stars at high redshifts are not the same population of sources we observe in the more local universe. In fact, vigorous star formation in the early universe is hosted by very massive structures, while for z~1 a comparable activity is encountered in much smaller systems, consistent with the down-sizing scenario. The available clustering data can hardly be reconciled with merging as the main trigger for intense star formation activity at high redshifts. We further argue that, after a characteristic time-scale of ~1 Gyr, massive star-forming galaxies at z>~2 evolve into z