Published in

Nature Research, Nature Physics, 6(10), p. 457-461, 2014

DOI: 10.1038/nphys2940

Links

Tools

Export citation

Search in Google Scholar

Universal features in the energetics of symmetry breaking

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A symmetry breaking (SB) involves an abrupt change in the set of microstates that a system can explore. This change has unavoidable thermodynamic implications. According to Boltzmann's microscopic interpretation of entropy, a shrinkage of the set of compatible states implies a decrease of entropy, which eventually needs to be compensated by dissipation of heat and consequently requires work. Examples are the compression of a gas and the erasure of information. On the other hand, in a spontaneous SB, the available phase space volume changes without the need for work, yielding an apparent decrease of entropy. Here we show that this decrease of entropy is a key ingredient in the Szilard engine and Landauer's principle and report on a direct measurement of the entropy change along SB transitions in a Brownian particle. The SB is induced by a bistable potential created with two optical traps. The experiment confirms theoretical results based on fluctuation theorems, allows us to reproduce the Szilard engine extracting energy from a single thermal bath, and shows that the signature of a SB in the energetics is measurable, providing new methods to detect, for example, the coexistence of metastable states in macromolecules. ; Comment: 7 pages, 3 figures