Dissemin is shutting down on January 1st, 2025

Published in

Impact Journals, Oncotarget, 1(3), p. 22-30, 2012

DOI: 10.18632/oncotarget.437

Links

Tools

Export citation

Search in Google Scholar

Regression of metastatic melanoma by targeting cancer stem cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Current therapeutic regimens attempt to eliminate all malignant cells of a melanoma lesion; pre-clinical data, however, indicate that melanoma, once established, is maintained by a minor, non-random subset of cancer cells which are characterized by CD20 expression. We asked to eliminate those cells in a progressing, chemotherapy-refractory metastatic melanoma patient by lesional injections of the anti-CD20 therapeutic antibody rituximab and concomitant low dose systemic dacarbazine treatment. Although the frequencies of CD20+ melanoma cells within the tumor lesions were initially about 2% and the bulk of tumor cells did not express CD20, rituximab treatment produced lasting remission of treated tumor lesions in the long-term. Remission was accompanied by a decline of the melanoma serum marker S-100 to physiological levels. Detailed in-depth-analyses revealed a switch of serum cytokines from a T helper-2 to a pro-inflammatory T helper-1 cell profile. Apart from B cell elimination and decline in gammaglobulin levels, no grade 3/4 toxicity related to treatment was observed. Data provide the first clinical evidence that targeting the minor subset of CD20+ "melanoma sustaining cells" produces regression of chemotherapy-refractory melanoma and highlight the potency of selective cancer cell targeting in the treatment of melanoma.