Published in

Future Medicine, Pharmacogenomics, 6(10), p. 989-995, 2009

DOI: 10.2217/pgs.09.44

Links

Tools

Export citation

Search in Google Scholar

Development of a new genotyping assay for detection of the BDNF Val66Met polymorphism using melting-curve analysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Brain-derived neurotrophic factor (BDNF) plays a critical role in the growth, differentiation and survival of neurons in the CNS. Recent research has suggested that BDNF may be implicated in the etiology of mood disorders and schizophrenia, as well as in the therapeutic action of some drugs, such as antidepressants and antipsychotics. This study aimed to develop a simple, fast and accurate new method for detecting the Val66Met polymorphism of the BDNF gene in schizophrenia patients using melting-curve analysis and a DNA-specific dye, SYBR® Green I. A group of 30 schizophrenia patients were analyzed to detect the BDNF Val66Met polymorphism (rs6265) using the new genotyping method based on the analysis of fluorescence melting curves of PCR products that were labeled with SYBR Green I. The genotype results were confirmed for all 30 samples using the specific BDNF TaqMan® allele discrimination assay. This new method allows the analysis of both alleles in the same reaction tube using SYBR Green I, with no need for additional steps. The addition of a GC clamp makes this method universally applicable, since the melting temperature of one allele can be adjusted as necessary to give the distinctive separation of melting curves. Therefore, this new method is simple, fast and accurate for determining the presence of the BDNF Val66Met polymorphism. It may also be useful for the analysis of other SNPs in pharmacogenetic studies.