Published in

Future Medicine, Regenerative Medicine, 6(3), p. 849-861, 2008

DOI: 10.2217/17460751.3.6.849

Links

Tools

Export citation

Search in Google Scholar

Transformation of human mesenchymal stem cells in radiation carcinogenesis: long-term effect of ionizing radiation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Increasing evidence on cancer stem cells suggest that stem cells are susceptive to carcinogenesis and consequently can be the origin of many cancers. We have recently established a telomerase-transduced human mesenchymal stem cell line and subsequently irradiated this in order to achieve malignant transformation. In the present study, we analyzed the long-term effect of ionizing radiation on these cells and investigate whether radiation can trigger tumor development. The cells were irradiated with a low (2.5 Gy) and a high (15 Gy) dose of γ-rays and followed for up to 6 months after radiation. A subclone of the cells irradiated with 2.5 Gy of γ-rays formed tumors after implantation to severe combined immunodeficiency mice. During the process of transformation, the cells showed accelerated telomere shortening, increased levels of anaphase bridges and a shift from balanced to unbalanced translocations. The tumor suppressor genes p53 and p21CIP1 functioned normally throughout the study. Our observations indicate that radiation destabilized the telomeres and that the presence of uncapped telomeres initiated fusion-break-fusion cycles, resulting in increased chromosomal instability and tumor formation. Thus, bone marrow-derived human mesenchymal stem cells are capable of exhibiting a malignant phenotype.