Dissemin is shutting down on January 1st, 2025

Published in

Future Medicine, Nanomedicine, 2(3), p. 233-245, 2008

DOI: 10.2217/17435889.3.2.233

Links

Tools

Export citation

Search in Google Scholar

Porous bioactive nanostructured scaffolds for bone regeneration: a sol-gel solution

Journal article published in 2008 by Oliver Mahony, Julian R. Jones ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Considerable advances have been seen in materials with tailored nanostructures in recent years, owing, in part, to increased demands placed on material properties in fields, such as tissue regeneration and wound healing. This review focuses on the developments made in nanoporous bioactive glasses, their novel nanocomposites and their application to bone regeneration. Bioactive glasses have the ability to stimulate new bone growth as they dissolve in the body. Sol-gel bioactive glasses have a nanoporosity that provides sites for cell attachment and tailorable degradation rates. Importantly, the glasses can be made into interconnected porous structures that can be used as 3D templates for bone growth, although, because they are glasses, they cannot be implanted directly into sites that are under cyclic loading. Composites provide a partial solution to this problem, although their bioactive and degradation properties are not ideal, therefore novel nanocomposites are needed. The route to these potentially ideal materials is described.