Published in

SAGE Publications, Multiple Sclerosis Journal, 12(21), p. 1521-1532, 2015

DOI: 10.1177/1352458514564589

Links

Tools

Export citation

Search in Google Scholar

Fingolimod does not impair T-cell release from the thymus and beneficially affects Treg function in patients with multiple sclerosis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: In multiple sclerosis (MS), disturbed T-cell homeostasis affects both conventional CD4+ T cells (Tcon) and regulatory T cells (Treg). Functionally, this is linked to a loss of Treg-suppressive properties. Concerns exist as to whether fingolimod might further aggravate Treg dysfunction by inhibiting thymic egress and, thus, promoting premature immunosenescence. Objective: The objective of this paper is to investigate whether fingolimod, by sequestration of developing cells in the thymus, might deteriorate numeric and/or functional disequilibrium of T-cell subtypes. Methods: We assessed numbers and phenotypes of blood Tcon and Treg in 74 MS patients treated with fingolimod and in 37 healthy donors. Treg and Tcon were also analyzed for immunoreactivity, suppressive function, sphingosine-1-phosphate-triggered (S1P) trafficking, and S1P-receptor expression. This was complemented by assessing surrogate markers of thymic T-cell development, including frequencies of cells expressing T-cell receptors (TCR) of dual specificity, and TCR diversity in Treg. Results: Fingolimod did not negatively affect naive T-cell phenotypes or markers of thymic T-cell development. By reducing CCR7-expressing Tcon, fingolimod increased relative proportions of Treg. As a result of this shift, fewer proliferative CCR7 Tcon became enriched and Treg-dysfunction was indirectly reversed. Conclusion: These observations argue against harmful interference of fingolimod with thymic T-cell output that, particularly in pediatric MS, might possibly counteract its beneficial effects.