Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 7(309), p. R732-R739

DOI: 10.1152/ajpregu.00095.2015

Links

Tools

Export citation

Search in Google Scholar

Impact of leg blood flow restriction during walking on central arterial hemodynamics

Journal article published in 2015 by Jun Sugawara, Tsubasa Tomoto ORCID, Hirofumi Tanaka
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Walking exercise with limb blood flow restriction (BFR) has been shown to increase muscular mass and strength even if it is performed at low exercise intensities. Despite mounting evidence for its efficacy and the increasing popularity, the safety of BFR exercise in relation to cardiac loads has not been established. The aim of this study was to determine the response of central hemodynamics during the BFR exercise to assess its impact on cardiac load. Fifteen apparently healthy sedentary or recreationally active adults (10 men and 5 women, 27 ± 1 yr) underwent five bouts of 2-min constant treadmill walking at 2 mph with 1-min rest intervals either with or without BFR on both proximal thighs. Beat-by-beat blood pressure and hemodynamics (via Modelflow method) were measured, and central arterial hemodynamics were evaluated with pulse wave analyses via general transfer function. Incident wave amplitude (IWA) and reflected wave amplitude (RWA) were obtained by the wave separation analysis. Peripheral systolic blood pressure (SBP) increased more substantially during walking with BFR (43 ± 5% vs. baseline) than without BFR (11 ± 4% vs. baseline). Aortic SBP did not change significantly during walking without BFR, but there was a substantial elevation in aortic SBP (43 ± 5% vs. baseline) during walking with BFR. Significant effect of BFR was seen in IWA but not in RWA. These findings suggest that even during slow-speed walking, leg BFR induces substantial hypertensive responses in the aorta. However, this response could not be explained by the augmented wave reflection.