Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 11(309), p. H1987-H1996, 2015

DOI: 10.1152/ajpheart.00721.2014

Links

Tools

Export citation

Search in Google Scholar

Depressor effect of chymase inhibitor in mice with high salt-induced moderate hypertension

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aim of the present study was to determine whether long-term high salt intake in the drinking water induces hypertension in wild-type (WT) mice and whether a chymase inhibitor or other antihypertensive drugs could reverse the increase of blood pressure. Eight-week-old male WT mice were supplied with drinking water containing 2% salt for 12 wk (high-salt group) or high-salt drinking water plus an oral chymase inhibitor (TPC-806) at four different doses (25, 50, 75, or 100 mg/kg), captopril (75 mg/kg), losartan (100 mg/kg), hydrochlorothiazide (3 mg/kg), eplerenone (200 mg/kg), or amlodipine (6 mg/kg). Control groups were given normal water with or without the chymase inhibitor. Blood pressure and heart rate gradually showed a significant increase in the high-salt group, whereas a dose-dependent depressor effect of the chymase inhibitor was observed. There was also partial improvement of hypertension in the losartan- and eplerenone-treated groups but not in the captopril-, hydrochlorothiazide-, and amlodipine-treated groups. A high salt load significantly increased chymase-dependent ANG II-forming activity in the alimentary tract. In addition, the relative contribution of chymase to ANG II formation, but not actual average activity, showed a significant increase in skin and skeletal muscle, whereas angiotensin-converting enzyme-dependent ANG II-forming activity and its relative contribution were reduced by high salt intake. Plasma and urinary renin-angiotensin system components were significantly increased in the high-salt group but were significantly suppressed in the chymase inhibitor-treated group. In conclusion, 2% salt water drinking for 12 wk caused moderate hypertension and activated the renin-angiotensin system in WT mice. A chymase inhibitor suppressed both the elevation of blood pressure and heart rate, indicating a definite involvement of chymase in salt-sensitive hypertension.