Published in

Oxford University Press, Clinical and Experimental Immunology, 1(184), p. 118-125, 2016

DOI: 10.1111/cei.12754

Links

Tools

Export citation

Search in Google Scholar

Serum properdin consumption as a biomarker of C5 convertase dysregulation in C3 glomerulopathy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Properdin (P) stabilizes the alternative pathway (AP) convertases, being the only known positive regulator of the complement system. In addition, P is a pattern recognition molecule able to initiate directly the AP on non-self surfaces. Although P deficiencies have long been known to be associated with Neisseria infections and P is often found deposited at sites of AP activation and tissue injury, the potential role of P in the pathogenesis of complement dysregulation-associated disorders has not been studied extensively. Serum P levels were measured in 49 patients with histological and clinical evidence of C3 glomerulopathy (C3G). Patients were divided into two groups according to the presence or absence of C3 nephritic factor (C3NeF), an autoantibody that stabilizes the AP C3 convertase. The presence of this autoantibody results in a significant reduction in circulating C3 (P < 0·001) and C5 levels (P < 0·05), but does not alter factor B, P and sC5b-9 levels. Interestingly, in our cohort, serum P levels were low in 17 of the 32 C3NeF-negative patients. This group exhibited significant reduction of C3 (P < 0·001) and C5 (P < 0·001) and increase of sC5b-9 (P < 0·001) plasma levels compared to the control group. Also, P consumption was correlated significantly with C3 (r = 0·798, P = 0·0001), C5 (r = 0·806, P < 0·0001), sC5b-9 (r = −0·683, P = 0·043) and a higher degree of proteinuria (r = −0·862, P = 0·013). These results illustrate further the heterogeneity among C3G patients and suggest that P serum levels could be a reliable clinical biomarker to identify patients with underlying surface AP C5 convertase dysregulation.