Published in

International Union of Crystallography, Journal of Applied Crystallography, 2(40), p. 290-301, 2007

DOI: 10.1107/s0021889806053131

Links

Tools

Export citation

Search in Google Scholar

Phasing of resonant anomalous X-ray reflectivity spectra and direct Fourier synthesis of element-specific partial structures at buried interfaces

Journal article published in 2007 by Changyong Park ORCID, Paul A. Fenter
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A formalism for model-independent determination of element-specific partial structures at buried interfaces using the phase-dependent behavior of resonant anomalous X-ray reflectivity (RAXR) data is described. Each RAXR spectrum (i.e.reflectivityversusenergy at a fixed momentum transfer near the absorption edge of interest) is uniquely constrained by the amplitude and phase of the resonant partial structure factor with pre-determined non-resonant total structure factor and anomalous dispersion corrections of the resonant species. The element-specific partial density distribution is then imaged by discrete Fourier synthesis with the partial structure factor. The utility of this approach is demonstrated in the comparison of Rb+and Sr2+distributions at muscovite (001)–aqueous solution interfaces derived by model-independent and model-dependent approaches. This imaging method is useful for rapid determination of complex buried interfacial structures where element-specific atomic distributions are poorly constrained by conventional X-ray reflectivity analysis.