Published in

Lippincott, Williams & Wilkins, Anesthesiology, 2(122), p. 363-373, 2015

DOI: 10.1097/aln.0000000000000545

Lippincott, Williams & Wilkins, Survey of Anesthesiology, 6(59), p. 259-260, 2015

DOI: 10.1097/01.sa.0000471757.24504.b7

Links

Tools

Export citation

Search in Google Scholar

Therapeutic Efficacy of Human Mesenchymal Stromal Cells in the Repair of Established Ventilator-Induced Lung Injury in the Rat:

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background: Rodent mesenchymal stem/stromal cells (MSCs) enhance repair after ventilator-induced lung injury (VILI). We wished to determine the therapeutic potential of human MSCs (hMSCs) in repairing the rodent lung. Methods: In series 1, anesthetized rats underwent VILI (series 1A, n = 8 to 9 per group) or protective ventilation (series 1B, n = 4 per group). After VILI, they were randomized to intravenous administration of (1) vehicle (phosphate-buffered saline); (2) fibroblasts (1 × 107 cells/kg); or (3) human MSCs (1 × 107 cells/kg) and the effect on restoration of lung function and structure assessed. In series 2, the efficacy of hMSC doses of 1, 2, 5, and 10 million/kg was examined (n = 8 per group). Series 3 compared the efficacy of both intratracheal and intraperitoneal hMSC administration to intravascular delivery (n = 5–10 per group). Series 4 examined the efficacy of delayed hMSC administration (n = 8 per group). Results: Human MSC’s enhanced lung repair, restoring oxygenation (131 ± 19 vs. 103 ± 11 vs. 95 ± 11 mmHg, P = 0.004) compared to vehicle or fibroblast therapy, respectively. hMSCs improved lung compliance, reducing alveolar edema, and restoring lung architecture. hMSCs attenuated lung inflammation, decreasing alveolar cellular infiltration, and decreasing cytokine-induced neutrophil chemoattractant-1 and interleukin-6 while increasing keratinocyte growth factor concentrations. The lowest effective hMSC dose was 2 × 106 hMSC/kg. Intraperitoneal hMSC delivery was less effective than intratracheal or intravenous hMSC. hMSCs enhanced lung repair when administered at later time points after VILI. Conclusions: hMSC therapy demonstrates therapeutic potential in enhancing recovery after VILI.