Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Geochemistry, Geophysics, Geosystems, 5(14), p. 1435-1453, 2013

DOI: 10.1029/2012gc004293

Links

Tools

Export citation

Search in Google Scholar

Oceanographic variability in the South Pacific Convergence Zone region over the last 210 years from multi-site coral Sr/Ca records: SPCZ VARIABILITY FROM CORAL Sr/Ca RECORD

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

[1] In the South Pacific Convergence Zone (SPCZ), the variability in a sub-seasonally resolved microatoll Porites colony Sr/Ca record from Tonga and a previously published high-resolution record from Fiji are strongly influenced by sea surface temperature (SST) over the calibration period from 1981 to 2004 (R2 = 0.67–0.68). However, the Sr/Ca-derived SST correlation to instrumental SST decreases back in time. The lower frequency secular trend (~1°C) and decadal-scale (~2–3°C) modes in Sr/Ca-derived SST are almost two times larger than that observed in instrumental SST. The coral Sr/Ca records suggest that local effects on SST generate larger amplitude variability than gridded SST products indicate. Reconstructed δ18O of seawater (δ18Osw) at these sites correlate with instrumental sea surface salinity (SSS; r = 0.64–0.67) but not local precipitation (r = −0.10 to −0.22) demonstrating that the advection and mixing of different salinity water masses may be the predominant control on δ18Osw in this region. The Sr/Ca records indicate SST warming over the last 100 years and appears to be related to the expansion of the western Pacific warm pool (WPWP) including an increasing rate of expansion in the last ~20 years. The reconstructed δ18Osw over the last 100 years also shows surface water freshening across the SPCZ. The warming and freshening of the surface ocean in our study area suggests that the SPCZ has been shifting (expanding) southeast, possibly related to the southward shift and intensification of the South Pacific gyre over the last 50 years in response to strengthened westerly winds.