Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, The Journal of Chemical Physics, 7(143), p. 071101

DOI: 10.1063/1.4928638

Links

Tools

Export citation

Search in Google Scholar

Communication: Observation of local-bender eigenstates in acetylene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report the observation of eigenstates that embody large-amplitude, local-bending vibrational motion in acetylene by stimulated emission pumping spectroscopy via vibrational levels of the S1 state involving excitation in the non-totally symmetric bending modes. The N[subscript b] = 14 level, lying at 8971.69 cm[superscript −1] (J = 0), is assigned on the basis of degeneracy due to dynamical symmetry breaking in the local-mode limit. The level pattern for the N[subscript b] = 16 level, lying at 10 218.9 cm[superscript−1], is consistent with expectations for increased separation of ℓ = 0 and 2 vibrational angular momentum components. Increasingly poor agreement between our observations and the predicted positions of these levels highlights the failure of currently available normal mode effective Hamiltonian models to extrapolate to regions of the potential energy surface involving large-amplitude displacement along the acetylene ⇌ vinylidene isomerization coordinate ; United States. Dept. of Energy. Office of Basic Energy Sciences. Chemical Sciences Geosciences and Biosciences Division (Award No. DE-FG0287ER13671)