Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 6(85)

DOI: 10.1103/physreve.85.061602

Links

Tools

Export citation

Search in Google Scholar

Multiscale deformation of a liquid surface in interaction with a nanoprobe

Journal article published in 2012 by René Ledesma-Alonso ORCID, Philippe Tordjeman, Dominique Legendre
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The interaction between a nanoprobe and a liquid surface is studied. The surface deformation depends on physical and geometric parameters, which are depicted by employing three dimensionless parameters: Bond number Bo, modified Hamaker number Ha, and dimensionless separation distance D*. The evolution of the deformation is described by a strongly nonlinear partial differential equation, which is solved by means of numerical methods. The dynamic analysis of the liquid profile points out the existence of a critical distance D* min, below which the irreversible wetting process of the nanoprobe happens. For D* ≥ D*min, the numerical results show the existence of two deformation profiles, one stable and another unstable from the energetic point of view. Different deformation length scales, characterizing the stable liquid equilibrium interface, define the near- and the far-field deformation zones, where self-similar profiles are found. Finally, our results allow us to provide simple relationships between the parameters, which leads to determine the optimal conditions when performing atomic force microscope measurements over liquids.