Published in

Portland Press, Biochemical Journal, 5(473), p. 559-570, 2016

DOI: 10.1042/bj20150930

Links

Tools

Export citation

Search in Google Scholar

Directed evolution of Tau class glutathione transferases reveals a site that regulates catalytic efficiency and masks co-operativity

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A library of Tau class GSTs (glutathione transferases) was constructed by DNA shuffling using the DNA encoding the Glycine max GSTs GmGSTU2-2, GmGSTU4-4 and GmGSTU10-10. The parental GSTs are >88% identical at the sequence level; however, their specificity varies towards different substrates. The DNA library contained chimaeric structures of alternated segments of the parental sequences and point mutations. Chimaeric GST sequences were expressed in Escherichia coli and their enzymatic activities towards CDNB (1-chloro-2,4-dinitrobenzene) and the herbicide fluorodifen (4-nitrophenyl α,α,α-trifluoro-2-nitro-p-tolyl ether) were determined. A chimaeric clone (Sh14) with enhanced CDNB- and fluorodifen-detoxifying activities, and unusual co-operative kinetics towards CDNB and fluorodifen, but not towards GSH, was identified. The structure of Sh14 was determined at 1.75 Å (1 Å=0.1 nm) resolution in complex with S-(p-nitrobenzyl)-glutathione. Analysis of the Sh14 structure showed that a W114C point mutation is responsible for the altered kinetic properties. This was confirmed by the kinetic properties of the Sh14 C114W mutant. It is suggested that the replacement of the bulky tryptophan residue by a smaller amino acid (cysteine) results in conformational changes of the active-site cavity, leading to enhanced catalytic activity of Sh14. Moreover, the structural changes allow the strengthening of the two salt bridges between Glu66 and Lys104 at the dimer interface that triggers an allosteric effect and the communication between the hydrophobic sites.