Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Agricultural and Food Chemistry, 48(63), p. 10388-10398, 2015

DOI: 10.1021/acs.jafc.5b04415

Links

Tools

Export citation

Search in Google Scholar

Curcumin Suppresses Phthalate-Induced Metastasis and the Proportion of Cancer Stem Cell (CSC)-like Cells via the Inhibition of AhR/ERK/SK1 Signaling in Hepatocellular Carcinoma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent evidence indicating that phthalates promote cancer development, including cell proliferation, migration, and invasion, has raised public health concerns. Here, we show that bis(2-ethylhexyl) phthalate promotes the migration, invasion, and epithelial mesenchymal transition of hepatocellular carcinoma cells. In addition, bis(2-ethylhexyl) phthalate increased the proportion of cancer stem cell (CSC)-like cells and sternness maintenance in vitro as well as tumor growth and metastasis in vivo. The various activities of curcumin, including anticancer, anti-inflammation, antioxidation, and immunomodulation, have been investigated extensively. Curcumin suppressed phthalate-induced cell migration, invasion, and epithelial mesenchymal transition, decreased the proportion of CSC-like cells in hepatocellular carcinoma cell lines in vitro, and inhibited tumor growth and metastasis in vivo. We also reveal that curcumin suppressed phthalate-induced migration, invasion, and CSC-like cell maintenance through inhibition of the aryl hydrocarbon receptor/ERK/SK1/S1P3 signaling pathway. Our results suggest that curcumin may be a potential antidote for phthalate-induced cancer progression.