Published in

Frontiers Media, Frontiers in Plant Science, (3)

DOI: 10.3389/fpls.2012.00036

Links

Tools

Export citation

Search in Google Scholar

Amino Acid Transporter Inventory of the Selaginella Genome

Journal article published in 2012 by Daniel Wipf, Dominique Loqué, Sylvie Lalonde, Wolf B. Frommer ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Amino acids play fundamental roles in a multitude of functions including protein synthesis, hormone metabolism, nerve transmission, cell growth, production of metabolic energy, nucleobase synthesis, nitrogen metabolism, and urea biosynthesis. Selaginella as a member of the lycophytes is part of an ancient lineage of vascular plants that had arisen ∼400 million years ago. In angiosperms, which have attracted most of the attention for nutrient transport so far, we have been able to identify many of the key transporters for nitrogen. Their role is not always fully clear, thus an analysis of Selaginella as a representative of an ancient vascular plant may help shed light on the evolution and function of these diverse transporters. Here we annotated and analyzed the genes encoding putative transporters involved in cellular uptake of amino acids present in the Selaginella genome.