Published in

Elsevier, The American Journal of Pathology, 3(175), p. 1200-1207, 2009

DOI: 10.2353/ajpath.2009.080979

Links

Tools

Export citation

Search in Google Scholar

Expression of Parathyroid-Specific Genes in Vascular Endothelial Progenitors of Normal and Tumoral Parathyroid Glands

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Parathyroid tissue is able to spontaneously induce angiogenesis, proliferate, and secrete parathyroid hormone when autotransplanted in patients undergoing total parathyroidectomy. Angiogenesis is also involved in parathyroid tumorigenesis. Here we investigated the anatomical and molecular relationship between endothelial and parathyroid cells within human parathyroid glands. Immunohistochemistry for CD34 antigen identified two subpopulations in normal and tumoral parathyroid glands: one constituted by cells lining small vessels that displayed endothelial antigens (factor VIII, isolectin, laminin, CD146) and the other constituted of single cells scattered throughout the parenchyma that did not express endothelial markers. These parathyroid-derived CD34(+) cells were negative for the hematopoietic and mesenchymal markers CD45, Thy-1/CD90, CD105, and CD117/c-kit; however, a subset of CD34(+) cells co-expressed the parathyroid specific genes glial cell missing B, parathyroid hormone, and calcium sensing receptor. When cultured, these cells released significant amount of parathyroid hormone. Parathyroid-derived CD34(+) cells, but not CD34(-) cells, proliferated slowly and differentiated into mature endothelial cells. CD34(+) cells from parathyroid tumors differed from those derived from normal parathyroid glands as: 1) they were more abundant and mainly scattered throughout the parenchyma; 2) they rarely co-expressed CD146; and 3) a fraction co-expressed nestin. In conclusion, we identified cells expressing endothelial and parathyroid markers in human adult parathyroid glands. These parathyroid/endothelial cells were more abundant and less committed in parathyroid tumors compared with normal glands, showing features of endothelial progenitors, which suggests that they might be involved in parathyroid tumorigenesis.